목록분류 전체보기 (295)
UOMOP
import matplotlib.pyplot as plt X = [0, 15, 30] Y_0 = [15.752, 18.992, 19.364] Y_25 = [15.761, 18.909, 19.272] Y_50 = [15.718, 18.706, 19.015] Y_75 = [15.572, 18.021, 18.232] Y_1 = [12.095, 12.097, 12.099] plt.plot(X, Y_0, 'o-', color='blue', label='MR = 0%') plt.plot(X, Y_25, 's--', color='red', label='MR = 25%') plt.plot(X, Y_50, '^-', color='green', label='MR = 50%') plt.plot(X, Y_75, 'x:', c..
import matplotlib.pyplot as plt import torchvision.transforms as transforms import torch.nn.functional as F import math import torch import torchvision import torch.nn as nn import torch.optim as optim import torch.nn.functional as f from torch.utils.data import DataLoader, Dataset import time from params import * import os from tqdm import tqdm device = torch.device("cuda:0" if torch.cuda.is_av..
import matplotlib.pyplot as plt import torchvision.transforms as transforms import torch.nn.functional as F import math import torch import torchvision import torch.nn as nn import torch.optim as optim import torch.nn.functional as f from torch.utils.data import DataLoader, Dataset import time from params import * import os from tqdm import tqdm device = torch.device("cuda:0" if torch.cuda.is_av..
import matplotlib.pyplot as plt import torchvision.transforms as transforms import torch.nn.functional as F import math import torch import torchvision import torch.nn as nn import torch.optim as optim import torch.nn.functional as f from torch.utils.data import DataLoader, Dataset import time from params import * import os from tqdm import tqdm device = torch.device("cuda:0" if torch.cuda.is_av..
import torch import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import seaborn as sns def calculate_correlation(patches): flattened_patches = patches.view(patches.size(0), -1) mean_centered = flattened_patches - flattened_patches.mean(dim=1, keepdim=True) norm = mean_centered.norm(dim=1, keepdim=True) norm[norm == 0] = 1 correlation_matrix = torch.mm(m..
import torch import torchvision import torchvision.transforms as transforms import torch import matplotlib.pyplot as plt import seaborn as sns import torch import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import seaborn as sns def calculate_correlation(patches): flattened_patches = patches.view(patches.size(0), -1) mean_centered = flattened_patches -..