목록Wireless Comm. (94)
UOMOP
import io import scipy.io as sio import numpy as np from tqdm import tqdm import time import math import matplotlib.pyplot as plt K = 4 # num of users P = 8 # Tx AnT. Q = 2 # Rx AnT. iter = 100 SNRdB = 10 SNR = 10.0 ** (SNRdB/10.0) E_tx = 10.0 u = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] def conj_tran(input) : return np.transpose(input.conj()) #np.random.seed(12334) # Hk 행렬 생성 #H = [] B = [] B_b..
import cv2 import math import time import torch import random import torchvision import numpy as np from PIL import Image import torch.nn as nn from numpy import sqrt import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torchvision import datasets from torch.utils.data import DataLoader, Dataset def sobel_filter(img,..
import cv2 import math import time import torch import random import torchvision import numpy as np from PIL import Image import torch.nn as nn from numpy import sqrt import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torchvision import datasets from torch.utils.data import DataLoader, Dataset import os os.environ[..
######################## Library ######################## import cv2 import math import torch import torchvision import numpy as np import torch.nn as nn import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torch.utils.data import DataLoader ######################## GPU Check ######################## device = torch.d..
import cv2 import math import time import torch import random import torchvision import numpy as np from PIL import Image import torch.nn as nn from numpy import sqrt import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torchvision import datasets from torch.utils.data import DataLoader, Dataset device = torch.device..