UOMOP
High Attention Selection 본문
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torch.nn.functional as F
import math
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as f
from torch.utils.data import DataLoader, Dataset
import time
from params import *
import os
from tqdm import tqdm
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def attention_based_selection(images, patch_size, mask_ratio) :
batch_patches = F.unfold(images, kernel_size=patch_size, stride=patch_size)
batch_patches = batch_patches.view(images.size(0), 3, -1, patch_size, patch_size)
batch_patches = batch_patches.permute(0, 2, 1, 3, 4).contiguous()
correlation_map = calculate_correlation_batch(batch_patches)
total_patches = batch_patches.size(1)
patch_count = int(total_patches * (1 - mask_ratio))
selected_patches_indexes = select_patches_batch_high_correlation(correlation_map, patch_count)
masked_images = mask_unselected_patches_batch(images, selected_patches_indexes, patch_size)
return masked_images
def calculate_correlation_batch(patches):
B, N, C, H, W = patches.shape
patches = patches.view(B, N, -1)
mean_centered = patches - patches.mean(dim=2, keepdim=True)
norm = mean_centered.norm(dim=2, keepdim=True)
norm[norm == 0] = 1
correlation_matrix = torch.matmul(mean_centered, mean_centered.transpose(1, 2)) / torch.matmul(norm, norm.transpose(1, 2))
return correlation_matrix
def select_patches_batch_high_correlation(correlation_map, patch_count):
B, N, _ = correlation_map.shape
selected_indexes = torch.zeros((B, patch_count), dtype=torch.long)
for b in range(B):
selected = [N // 2] # 시작점은 중간 패치로 동일하게 설정
for _ in range(1, patch_count):
last_selected_index = selected[-1]
masked_correlation = correlation_map[b, last_selected_index].clone()
masked_correlation[selected] = -1 # 이미 선택된 패치는 선택되지 않도록 점수를 최소화
next_patch_index = masked_correlation.argmax().item() # 가장 높은 correlation 점수를 가진 인덱스 선택
selected.append(next_patch_index)
selected_indexes[b] = torch.tensor(selected)
return selected_indexes
def mask_unselected_patches_batch(images, selected_indexes, patch_size):
B, C, H, W = images.shape
masked_images = images.clone()
for b in range(B):
mask = torch.ones((H, W), dtype=torch.bool, device=images.device)
for index in selected_indexes[b]:
row = torch.div(index, torch.div(H, patch_size, rounding_mode='floor'), rounding_mode='floor') * patch_size
col = torch.div(index % (H // patch_size), 1, rounding_mode='floor') * patch_size
mask[row:row + patch_size, col:col + patch_size] = False
masked_images[b, :, mask] = 0
return masked_images
class Encoder(nn.Module):
def __init__(self, latent_dim):
super(Encoder, self).__init__()
self.latent_dim = latent_dim
self.encoder = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1), # Output: [batch, 32, 16, 16]
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), # Output: [batch, 64, 8, 8]
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), # Output: [batch, 128, 4, 4]
nn.ReLU(),
nn.Flatten(),
nn.Linear(4*4*128, self.latent_dim),
)
def forward(self, x):
return self.encoder(x)
class Decoder(nn.Module):
def __init__(self, latent_dim):
super(Decoder, self).__init__()
self.latent_dim = latent_dim
self.decoder = nn.Sequential(
nn.Linear(self.latent_dim, 4*4*128),
nn.ReLU(),
nn.Unflatten(1, (128, 4, 4)),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), # Output: [batch, 64, 8, 8]
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1), # Output: [batch, 32, 16, 16]
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1), # Output: [batch, 3, 32, 32]
nn.Sigmoid()
)
def forward(self, x):
return self.decoder(x)
class Autoencoder(nn.Module):
def __init__(self, latent_dim):
super(Autoencoder, self).__init__()
self.latent_dim = latent_dim
self.encoder = Encoder(latent_dim)
self.decoder = Decoder(latent_dim)
def AWGN(self, input, SNRdB):
normalized_tensor = f.normalize(input, dim=1)
SNR = 10.0 ** (SNRdB / 10.0)
std = 1 / math.sqrt(self.latent_dim * SNR)
n = torch.normal(0, std, size=normalized_tensor.size()).to(device)
return normalized_tensor + n
def forward(self, x, SNRdB):
encoded = self.encoder(x)
channel_output = self.AWGN(encoded, SNRdB)
decoded = self.decoder(channel_output)
return decoded
def preprocess_and_save_dataset(dataset, root_dir, patch_size, mask_ratio):
os.makedirs(root_dir, exist_ok=True)
for i, (images, _) in tqdm(enumerate(dataset), total=len(dataset)):
masked_images = attention_based_selection(images.unsqueeze(0), patch_size, mask_ratio)
torch.save({
'masked_images': masked_images.squeeze(0),
'original_images': images
}, os.path.join(root_dir, f'data_{i}.pt'))
class PreprocessedCIFAR10Dataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.file_paths = [os.path.join(root_dir, f) for f in os.listdir(root_dir) if f.endswith('.pt')]
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
file_path = self.file_paths[idx]
data = torch.load(file_path)
masked_images = data['masked_images']
original_images = data['original_images']
if self.transform:
masked_images = self.transform(masked_images)
original_images = self.transform(original_images)
return masked_images, original_images
def train(latent_dim, patch_size, mask_ratio, trainloader, testloader):
for snr_i in range(len(params['SNR'])) :
model = Autoencoder(latent_dim=latent_dim).to(device)
print("Model size : {}".format(count_parameters(model)))
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=params['LR'])
min_test_cost = float('inf')
epochs_no_improve = 0 # 감소하지 않은 에폭 수
n_epochs_stop = 20 # 조기 중지 기준이 되는 에폭 수
print("+++++ SNR = {} Training Start! +++++\t".format(params['SNR'][snr_i]))
max_psnr = 0
for epoch in range(params['EP']):
# ========================================== Train ==========================================
train_loss = 0.0
model.train()
timetemp = time.time()
for masked_images, original_images in trainloader:
original_images = original_images.to(device)
masked_images = masked_images.to(device)
optimizer.zero_grad()
outputs = model(masked_images, SNRdB = params['SNR'][snr_i])
loss = criterion(original_images, outputs)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_cost = train_loss / len(trainloader)
tr_psnr = round(10 * math.log10(1.0 / train_cost), 3)
# ========================================================================
test_loss = 0.0
model.eval()
with torch.no_grad():
for masked_images, original_images in testloader:
original_images = original_images.to(device)
masked_images = masked_images.to(device)
outputs = model(masked_images, SNRdB=params['SNR'][snr_i])
loss = criterion(original_images, outputs)
test_loss += loss.item()
test_cost = test_loss / len(testloader)
test_psnr = round(10 * math.log10(1.0 / test_cost), 3)
# 조기 중지 조건 확인
if test_cost < min_test_cost:
min_test_cost = test_cost
epochs_no_improve = 0
else:
epochs_no_improve += 1
if epochs_no_improve == n_epochs_stop:
print("Early stopping!")
break # 조기 종료
training_time = time.time() - timetemp
print(
"[{:>3}-Epoch({:>5}sec.)] PSNR(Train / Val) : {:>6.4f} / {:>6.4f} Loss(Train / Val) : {:>5.5f} / {:>5.5f}".format(
epoch + 1, round(training_time, 2), tr_psnr, test_psnr, train_cost, test_cost))
if test_psnr > max_psnr:
save_folder = 'trained_model'
if not os.path.exists(save_folder):
os.makedirs(save_folder)
max_psnr = test_psnr
save_path = os.path.join(save_folder, "High_atten_selec(PS=" + str(patch_size) + "_DIM=" + str(latent_dim) + "_MR=" + str(mask_ratio) + "_SNR=" + str(params['SNR'][snr_i]) + "_PSNR=" + str(max_psnr) + ").pt")
torch.save(model, save_path)
'''
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(images[0].permute(1, 2, 0)) # Unnormalize
plt.title('Original Image')
plt.subplot(1, 2, 2)
plt.imshow(masked_images[0].permute(1, 2, 0)) # Unnormalize
plt.title('Masked Image')
plt.show()
'''
if __name__ == '__main__':
for ps_i in range(len(params['PS'])):
for dim_i in range(len(params['DIM'])):
for mr_i in range(len(params['MR'])):
Processed_train_path = "ProcessedTrain(PS=" + str(params['PS'][ps_i]) + "_MR=" + str(params['MR'][mr_i]) + ")"
Processed_test_path = "ProcessedTest(PS=" + str(params['PS'][ps_i]) + "_MR=" + str(params['MR'][mr_i]) + ")"
if not os.path.exists(Processed_train_path):
transform = transforms.Compose([transforms.ToTensor()])
train_cifar10 = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
preprocess_and_save_dataset(train_cifar10, Processed_train_path, patch_size=params['PS'][ps_i], mask_ratio=params['MR'][mr_i])
if not os.path.exists(Processed_test_path):
transform = transforms.Compose([transforms.ToTensor()])
test_cifar10 = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
preprocess_and_save_dataset(test_cifar10, Processed_test_path, patch_size=params['PS'][ps_i], mask_ratio=params['MR'][mr_i])
traindataset = PreprocessedCIFAR10Dataset(root_dir=Processed_train_path)
testdataset = PreprocessedCIFAR10Dataset(root_dir=Processed_test_path)
trainloader = DataLoader(traindataset, batch_size=params['BS'], shuffle=True)
testloader = DataLoader(testdataset, batch_size=params['BS'], shuffle=True)
train(params['DIM'][dim_i], params['PS'][ps_i], params['MR'][mr_i], trainloader, testloader)
params = {
'BS': 64,
'LR': 0.0005,
'EP': 500,
'SNR': [0, 15, 30],
'DIM': [32, 128, 512],
'MR' : [0, 0.25, 0.5, 0.75, 1],
'PS' : [2, 4, 8, 16]
}
'Main' 카테고리의 다른 글
Low Attention Selection Performance (CR : 1/6, 1/24, 1/96) (PS : 2) (1) | 2024.03.15 |
---|---|
Random Selection (0) | 2024.03.15 |
Low Attention Selection (0) | 2024.03.15 |
Patch selection with zero padding (0) | 2024.03.13 |
cifar10 patch correlation map (0) | 2024.03.11 |
Comments