목록Research (24)
UOMOP
EPOCH : 1000
[21.4572, 28.5796, 30.3619] 기존에는 넘지 못했던 30을 넘음. epoch은 1000
배치사이즈를 128로 늘리니 high SNR에서의 성능 나옴.
import cv2 import math import torch import torchvision from fractions import Fraction import numpy as np import torch.nn as nn import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torchvision import datasets from torch.utils.data import DataLoader, Dataset device = torch.device("cuda:0" if torch.cuda.is_available() e..
import cv2 import math import torch import torchvision import numpy as np import torch.nn as nn import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torchvision import datasets from torch.utils.data import DataLoader, Dataset device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) args =..