목록Research (24)
UOMOP

from DiffusionFreeGuidence.TrainCondition import train, eval def main(model_config=None): modelConfig = { "state": "train", # train or eval "epoch": 320, "batch_size": 80, "T": 500, "channel": 128, "channel_mult": [1, 2, 2, 2], "num_res_blocks": 2, "dropout": 0.15, "lr": 1e-4, "multiplier": 2.5, "beta_1": 1e-4, "beta_T": 0.028, "img_size": 32, "grad_clip": 1., "device": "cuda:0", "w": 1.8, "save..

import os from typing import Dict import numpy as np import torch import torch.optim as optim from tqdm import tqdm from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.utils import save_image from DiffusionFreeGuidence.DiffusionCondition import GaussianDiffusionSampler, GaussianDiffusionTrainer from DiffusionFreeGui..