UOMOP
High Attention Selection Performance (CR : 1/6, 1/24, 1/96) (PS : 2) 본문
Main
High Attention Selection Performance (CR : 1/6, 1/24, 1/96) (PS : 2)
Happy PinGu 2024. 3. 18. 11:32import matplotlib.pyplot as plt
X = [0, 15, 30]
Y_0 = [15.773, 18.986, 19.371]
Y_25 = [15.763, 18.903, 19.264]
Y_50 = [15.685, 18.683, 19.012]
Y_75 = [15.532, 17.897, 18.102]
Y_1 = [12.095, 12.096, 12.096]
plt.plot(X, Y_0, 'o-', color='blue', label='MR = 0%')
plt.plot(X, Y_25, 's--', color='red', label='MR = 25%')
plt.plot(X, Y_50, '^-', color='green', label='MR = 50%')
plt.plot(X, Y_75, 'x:', color='magenta', label='MR = 75%')
plt.plot(X, Y_1, '+-', color='cyan', label='MR = 100%')
plt.title('Compression Ratio : 1/96, Patch Size : 2')
plt.xlabel('SNR(dB)')
plt.ylabel('PSNR')
plt.ylim([0, 40])
plt.legend()
plt.grid(True)
plt.show()
import matplotlib.pyplot as plt
X = [0, 15, 30]
Y_0 = [18.177, 22.796, 23.464]
Y_25 = [18.121, 22.354, 22.902]
Y_50 = [17.937, 21.333, 21.718]
Y_75 = [17.278, 19.054, 19.257]
Y_1 = [12.097, 12.098, 12.096]
plt.plot(X, Y_0, 'o-', color='blue', label='MR = 0%')
plt.plot(X, Y_25, 's--', color='red', label='MR = 25%')
plt.plot(X, Y_50, '^-', color='green', label='MR = 50%')
plt.plot(X, Y_75, 'x:', color='magenta', label='MR = 75%')
plt.plot(X, Y_1, '+-', color='cyan', label='MR = 100%')
plt.title('Compression Ratio : 1/24, Patch Size : 2')
plt.xlabel('SNR(dB)')
plt.ylabel('PSNR')
plt.ylim([0, 40])
plt.legend()
plt.grid(True)
plt.show()
import matplotlib.pyplot as plt
X = [0, 15, 30]
Y_0 = [21.212, 28.478, 29.963]
Y_25 = [20.937, 25.949, 26.684]
Y_50 = [20.206, 22.715, 22.896]
Y_75 = [18.404, 19.209, 19.275]
Y_1 = [12.096, 12.09, 12.096]
# 각각의 그래프에 다른 색상을 지정
plt.plot(X, Y_0, 'o-', color='blue', label='MR = 0%')
plt.plot(X, Y_25, 's--', color='red', label='MR = 25%')
plt.plot(X, Y_50, '^-', color='green', label='MR = 50%')
plt.plot(X, Y_75, 'x:', color='magenta', label='MR = 75%')
plt.plot(X, Y_1, '+-', color='cyan', label='MR = 100%')
# Title and labels with updated limits
plt.title('Compression Ratio : 1/6, Patch Size : 2')
plt.xlabel('SNR(dB)')
plt.ylabel('PSNR')
plt.ylim(0, 40)
plt.legend()
plt.grid(True)
plt.show()
'Main' 카테고리의 다른 글
PSNR Comparison (Compression Ratio : [1/96, 1/24, 1/6], PatchSize : 2) (0) | 2024.03.19 |
---|---|
Gaussian Selection Performance (CR : 1/6, 1/24, 1/96) (PS : 2) (0) | 2024.03.19 |
Low Attention Selection Performance (CR : 1/6, 1/24, 1/96) (PS : 2) (1) | 2024.03.15 |
Random Selection (0) | 2024.03.15 |
High Attention Selection (0) | 2024.03.15 |
Comments