목록Wireless Comm./Python (24)
UOMOP

import cv2 import math import time import torch import random import torchvision import numpy as np from PIL import Image import torch.nn as nn from numpy import sqrt from tqdm import trange import torch.optim as optim import torch.nn.functional as F import matplotlib.pyplot as plt import torchvision.transforms as tr from torchvision import datasets from sklearn.preprocessing import StandardScal..

transf = tr.Compose([tr.ToTensor(), tr.Grayscale(num_output_channels=1) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transf) #위에 전처리 trainloader = DataLoader(trainset, batch_size=50, shuffle=True) for data in trainloader : input = data[0] print(type(input)) print(input.shape) plt.imshow(input[0][0]) break

def add_noise(signal, snr_db): ''' signal: np.ndarray snr: float returns -> np.ndarray ''' if type(signal[0][0]) != "numpy.float64" : signal = signal.astype(float) sig_flattend = signal.flatten().tolist() Norm2 = np.linalg.norm(sig_flattend, axis = 0, ord = 2) signal *= signal * Norm2 snr = 10.0 ** (snr_db / 10.0) # Generate the noise as you did noise = acoustics.generator.white(signal.size).res..

#################################################################################### SNR_length = 30 filtering_size = 30 #################################################################################### import acoustics def add_AWGN_to_img(img, SNRdB) : height, width = img.shape noise = acoustics.generator.white(img.size).reshape(img.shape) SNR = 10.0**(SNRdB/10.0) current_SNR = np.mean(img) ..

#################################################################################### SNR_length = 30 filtering_size = 30 #################################################################################### import acoustics def add_AWGN_to_img(img, SNRdB) : height, width = img.shape noise = acoustics.generator.white(img.size).reshape(img.shape) SNR = 10.0**(SNRdB/10.0) current_SNR = np.mean(img) ..

#################################################################################### SNR_length = 30 filtering_size = 50 #################################################################################### import acoustics def add_AWGN_to_img(img, SNRdB) : height, width = img.shape noise = acoustics.generator.white(img.size).reshape(img.shape) SNR = 10.0**(SNRdB/10.0) current_SNR = np.mean(img) ..