목록Wireless Comm./CISL (16)
UOMOP
import cv2 import math import time import torch import random import torchvision import numpy as np from PIL import Image import torch.nn as nn from numpy import sqrt import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torchvision import datasets from torch.utils.data import DataLoader, Dataset def sobel_filter(img,..
import cv2 import math import time import torch import random import torchvision import numpy as np from PIL import Image import torch.nn as nn from numpy import sqrt import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torchvision import datasets from torch.utils.data import DataLoader, Dataset def sobel_filter(img,..
import cv2 import math import torch import random import torchvision import torch.nn as nn import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torch.utils.data import DataLoader import numpy as np import torchvision.transforms as transforms device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") prin..
import math import torch import random import torchvision import torch.nn as nn from tqdm import tqdm import torch.optim as optim import torch.nn.functional as f import matplotlib.pyplot as plt import torchvision.transforms as tr from torch.utils.data import DataLoader import numpy as np import torchvision.transforms as transforms device = torch.device("cuda:0" if torch.cuda.is_available() else ..