UOMOP
Chessboard_masking 본문
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def patch_std(image, patch_size=2):
# Calculate the standard deviation within each patch
H, W = image.shape
std_map = np.zeros((H // patch_size, W // patch_size))
for i in range(0, H, patch_size):
for j in range(0, W, patch_size):
patch = image[i:i+patch_size, j:j+patch_size]
std_map[i // patch_size, j // patch_size] = np.std(patch)
return std_map
def mask_patches_chessboard(images, patch_size=2, mask_ratio=0.5, complexity_based=False):
if mask_ratio != 0.5 :
B, C, H, W = images.shape
masked_images = images.clone()
for b in range(B):
image = images[b].permute(1, 2, 0).cpu().numpy() * 255
image = image.astype(np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Calculate complexity for each patch
complexity_map = patch_std(gray, patch_size)
# Initialize mask with chessboard pattern for complexity map dimensions
complexity_height, complexity_width = complexity_map.shape
mask = np.zeros((complexity_height, complexity_width), dtype=bool)
mask[::2, ::2] = 1
mask[1::2, 1::2] = 1
if complexity_based:
if mask_ratio > 0.5:
additional_masking_ratio = (mask_ratio - 0.5) / 0.5
complexity_threshold = np.quantile(complexity_map[~mask], 1 - additional_masking_ratio)
additional_mask = complexity_map <= complexity_threshold
mask[~mask] = additional_mask[~mask]
else:
unmasking_ratio = (0.5 - mask_ratio) / 0.5
complexity_threshold = np.quantile(complexity_map[mask], unmasking_ratio)
unmask = complexity_map >= complexity_threshold
mask[mask] = ~unmask[mask]
# Apply mask to the original image based on complexity map
for i in range(complexity_height):
for j in range(complexity_width):
if mask[i, j]:
image[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size] = 0
# Convert image back to PyTorch format
image = image.astype(np.float32) / 255.0
masked_images[b] = torch.from_numpy(image).permute(2, 0, 1)
elif mask_ratio == 0.5 :
B, C, H, W = images.shape
masked_images = images.clone()
# Create the chessboard pattern
pattern = np.tile(np.array([[1, 0] * (W // (2 * patch_size)), [0, 1] * (W // (2 * patch_size))]), (H // (2 * patch_size), 1))
for b in range(B):
image = images[b].permute(1, 2, 0).cpu().numpy() * 255
image = image.astype(np.uint8)
# Apply masking
mask = np.repeat(np.repeat(pattern, patch_size, axis=0), patch_size, axis=1)
image[mask == 0] = 0 # Apply chessboard pattern masking
# Convert back to PyTorch format
image = image.astype(np.float32) / 255.0
masked_images[b] = torch.from_numpy(image).permute(2, 0, 1)
return masked_images
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
# Load a batch of images from CIFAR-10
transform = transforms.Compose([transforms.ToTensor()])
dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
loader = DataLoader(dataset, batch_size=1, shuffle=True)
images, _ = next(iter(loader)) # Load a single batch (one image)
# Helper function to display images
def imshow(img):
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.axis('off')
# Display original image
plt.figure(figsize=(12, 8))
plt.subplot(2, 2, 1)
imshow(images[0])
plt.title("Original Image")
# Display masked images
mask_ratios = [0.25, 0.5, 0.75]
for idx, mask_ratio in enumerate(mask_ratios, start=2):
# Adjust the `mask_patches_chessboard` function call according to your setup
masked_images = mask_patches_chessboard(images, patch_size=2, mask_ratio=mask_ratio, complexity_based=True)
plt.subplot(2, 2, idx)
imshow(masked_images[0])
plt.title(f"Masked Image {int(mask_ratio * 100)}%")
plt.tight_layout()
plt.show()
'Main' 카테고리의 다른 글
Masking strategy comparison (0) | 2024.04.11 |
---|---|
ChessBoard Selection (0) | 2024.04.09 |
Mean_far_selection (0) | 2024.04.01 |
PSNR Comparison (Compression Ratio : [1/96, 1/24, 1/6], PatchSize : 2) (0) | 2024.03.19 |
Gaussian Selection Performance (CR : 1/6, 1/24, 1/96) (PS : 2) (0) | 2024.03.19 |
Comments