UOMOP

DDPM cifar10 Simple Unet 본문

Main

DDPM cifar10 Simple Unet

Happy PinGu 2024. 2. 14. 10:21
import torch
import torchvision
import matplotlib.pyplot as plt
import os
import time
import math
import torch
import torchvision
from torchvision.transforms import ToTensor, Compose, Normalize
import torch.nn as nn
from torchvision.utils import make_grid
import numpy as np

import torch.nn.functional as F

device = 'cuda' if torch.cuda.is_available() else 'cpu'


def linear_beta_schedule(timesteps, start=0.0001, end=0.02):
    return torch.linspace(start, end, timesteps)

def get_index_from_list(vals, t, x_shape):
    """
    Returns a specific index t of a passed list of values vals
    while considering the batch dimension.
    """
    # vals = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]
    # t    = [2, 1, 3]
    # 로 주어져있다면 3, 7, 14를 추출함
    batch_size = t.shape[0]
    out = vals.gather(-1, t.cpu())
    return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)

def forward_diffusion_sample(x_0, t, device="cpu"):
    """
    Takes an image and a timestep as input and
    returns the noisy version of it
    """
    noise = torch.randn_like(x_0)
    sqrt_alphas_cumprod_t = get_index_from_list(sqrt_alphas_cumprod, t, x_0.shape)
    sqrt_one_minus_alphas_cumprod_t = get_index_from_list(
        sqrt_one_minus_alphas_cumprod, t, x_0.shape
    )
    # mean + variance
    return sqrt_alphas_cumprod_t.to(device) * x_0.to(device) \
    + sqrt_one_minus_alphas_cumprod_t.to(device) * noise.to(device), noise.to(device)


# Define beta schedule
T = 300
betas = linear_beta_schedule(timesteps=T)

# Pre-calculate different terms for closed form
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
sqrt_recip_alphas = torch.sqrt(1.0 / alphas)
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)

from torchvision import transforms
from torch.utils.data import DataLoader
import numpy as np

IMG_SIZE = 32
BATCH_SIZE = 64

def load_transformed_dataset():
    data_transforms = [
        transforms.Resize((IMG_SIZE, IMG_SIZE)),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(), # Scales data into [0,1]
        transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1]
    ]
    data_transform = transforms.Compose(data_transforms)

    train = torchvision.datasets.CIFAR10('data', train=True, download=True, transform=Compose([ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]))
    test  = torchvision.datasets.CIFAR10('data', train=False, download=True, transform=Compose([ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]))

    return torch.utils.data.ConcatDataset([train, test])

def show_tensor_image(image):
    reverse_transforms = transforms.Compose([
        transforms.Lambda(lambda t: (t + 1) / 2),
        transforms.Lambda(lambda t: t.permute(1, 2, 0)), # CHW to HWC
        transforms.Lambda(lambda t: t * 255.),
        transforms.Lambda(lambda t: t.numpy().astype(np.uint8)),
        transforms.ToPILImage(),
    ])

    # Take first image of batch
    if len(image.shape) == 4:
        image = image[0, :, :, :]
    plt.imshow(reverse_transforms(image))

data = load_transformed_dataset()
dataloader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)

from torch import nn
import math


class Block(nn.Module):
    def __init__(self, in_ch, out_ch, time_emb_dim, up=False):
        super().__init__()
        self.time_mlp =  nn.Linear(time_emb_dim, out_ch)
        if up:
            self.conv1 = nn.Conv2d(2*in_ch, out_ch, 3, padding=1)
            self.transform = nn.ConvTranspose2d(out_ch, out_ch, 4, 2, 1)
        else:
            self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1)
            self.transform = nn.Conv2d(out_ch, out_ch, 4, 2, 1)


        self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1)
        self.bnorm1 = nn.BatchNorm2d(out_ch)
        self.bnorm2 = nn.BatchNorm2d(out_ch)
        self.relu  = nn.ReLU()

    def forward(self, x, t, ):
        # First Conv
        h = self.bnorm1(self.relu(self.conv1(x)))
        # Time embedding
        time_emb = self.relu(self.time_mlp(t))
        # Extend last 2 dimensions
        time_emb = time_emb[(..., ) + (None, ) * 2]
        # Add time channel
        h = h + time_emb
        # Second Conv
        h = self.bnorm2(self.relu(self.conv2(h)))
        # Down or Upsample

        return self.transform(h)


class SinusoidalPositionEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, time):

        device = time.device
        half_dim = self.dim // 2
        embeddings = math.log(10000) / (half_dim - 1)
        embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
        embeddings = time[:, None] * embeddings[None, :]
        embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)

        return embeddings


class SimpleUnet(nn.Module):
    """
    A simplified variant of the Unet architecture.
    """
    def __init__(self):
        super().__init__()
        image_channels = 3
        down_channels = (64, 128, 256, 512, 1024)
        up_channels = (1024, 512, 256, 128, 64)
        out_dim = 3
        time_emb_dim = 32

        # Time embedding
        self.time_mlp = nn.Sequential(
                SinusoidalPositionEmbeddings(time_emb_dim),
                nn.Linear(time_emb_dim, time_emb_dim),
                nn.ReLU()
            )

        # Initial projection
        self.conv0 = nn.Conv2d(image_channels, down_channels[0], 3, padding=1)

        # Downsample
        self.downs = nn.ModuleList([Block(down_channels[i], down_channels[i+1], \
                                    time_emb_dim) \
                    for i in range(len(down_channels)-1)])
        # Upsample
        self.ups = nn.ModuleList([Block(up_channels[i], up_channels[i+1], \
                                        time_emb_dim, up=True) \
                    for i in range(len(up_channels)-1)])

        # Edit: Corrected a bug found by Jakub C (see YouTube comment)
        self.output = nn.Conv2d(up_channels[-1], out_dim, 1)

    def forward(self, x, timestep):
        # Embedd time
        t = self.time_mlp(timestep)
        # Initial conv
        x = self.conv0(x)
        # Unet
        residual_inputs = []
        for down in self.downs:
            x = down(x, t)
            residual_inputs.append(x)
        for up in self.ups:
            residual_x = residual_inputs.pop()
            # Add residual x as additional channels
            x = torch.cat((x, residual_x), dim=1)
            x = up(x, t)
        return self.output(x)

model = SimpleUnet()
print("Num params: ", sum(p.numel() for p in model.parameters()))


def get_loss(model, x_0, t):
    x_noisy, noise = forward_diffusion_sample(x_0, t, device)
    noise_pred = model(x_noisy, t)

    return F.l1_loss(noise, noise_pred)


@torch.no_grad()
def sample_timestep(x, t):
    """
    Calls the model to predict the noise in the image and returns
    the denoised image.
    Applies noise to this image, if we are not in the last step yet.
    """
    betas_t = get_index_from_list(betas, t, x.shape)
    sqrt_one_minus_alphas_cumprod_t = get_index_from_list(
        sqrt_one_minus_alphas_cumprod, t, x.shape
    )
    sqrt_recip_alphas_t = get_index_from_list(sqrt_recip_alphas, t, x.shape)

    # Call model (current image - noise prediction)
    model_mean = sqrt_recip_alphas_t * (
            x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t
    )
    posterior_variance_t = get_index_from_list(posterior_variance, t, x.shape)

    if t == 0:
        # As pointed out by Luis Pereira (see YouTube comment)
        # The t's are offset from the t's in the paper
        return model_mean
    else:
        noise = torch.randn_like(x)

        return model_mean + torch.sqrt(posterior_variance_t) * noise


@torch.no_grad()
def sample_plot_image():
    # Sample noise
    img_size = IMG_SIZE
    img = torch.randn((1, 3, img_size, img_size), device=device)
    plt.figure(figsize=(15, 15))
    plt.axis('off')
    num_images = 10
    stepsize = int(T / num_images)

    for i in range(0, T)[::-1]:
        t = torch.full((1,), i, device=device, dtype=torch.long)
        img = sample_timestep(img, t)
        # Edit: This is to maintain the natural range of the distribution
        img = torch.clamp(img, -1.0, 1.0)
        if i % stepsize == 0:
            plt.subplot(1, num_images, int(i / stepsize) + 1)
            show_tensor_image(img.detach().cpu())
    plt.show()

from torch.optim import Adam

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
optimizer = Adam(model.parameters(), lr=0.001)
epochs = 1000 # Try more!

for epoch in range(epochs):
    for step, batch in enumerate(dataloader):
      optimizer.zero_grad()

      t = torch.randint(0, T, (BATCH_SIZE,), device=device).long()
      loss = get_loss(model, batch[0], t)
      loss.backward()
      optimizer.step()

      if epoch % 5 == 0 and step == 0:
        print(f"Epoch {epoch} | step {step:03d} Loss: {loss.item()} ")
        sample_plot_image()

    if (epoch + 1) % 10 == 0:
        save_path = str(epoch + 1) + ".pth"
        torch.save(model.state_dict(), save_path)

 

'Main' 카테고리의 다른 글

High Attention Selection  (0) 2024.03.15
Low Attention Selection  (0) 2024.03.15
Patch selection with zero padding  (0) 2024.03.13
cifar10 patch correlation map  (0) 2024.03.11
DeepJSCC  (0) 2024.03.11
Comments