UOMOP

FLOPs (Proposed encoder) 본문

DE/Code

FLOPs (Proposed encoder)

Happy PinGu 2024. 8. 28. 18:46
pip install fvcore
pip install thop

 

import torch
import torch.nn as nn
from thop import profile

# 수정된 Encoder 클래스
class Encoder(nn.Module):
    def __init__(self, latent_dim):
        super(Encoder, self).__init__()
        self.latent_dim = latent_dim

        # stride=2를 초반 레이어에 적용하고, kernel_size를 3으로 줄임
        self.in1 = nn.Conv2d(3, 32, kernel_size=5, stride=2, padding=3)
        self.in2 = nn.Conv2d(3, 32, kernel_size=5, stride=2, padding=3)
        self.in3 = nn.Conv2d(3, 32, kernel_size=5, stride=2, padding=2)
        self.in4 = nn.Conv2d(3, 32, kernel_size=5, stride=2, padding=0)

        self.out1 = nn.Conv2d(32, 32, kernel_size=3, stride=2, padding=3)
        self.out2 = nn.Conv2d(32, 32, kernel_size=3, stride=2, padding=3)
        self.out3 = nn.Conv2d(32, 32, kernel_size=3, stride=2, padding=3)
        self.out4 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=3)

        self.prelu = nn.PReLU()

        self.pool = nn.AdaptiveAvgPool2d((8, 8))

        self.flatten = nn.Flatten()
        self.linear = nn.Linear(2048, self.latent_dim)

        # 초반 레이어에 stride=2를 적용하여 연산량을 줄임
        self.essen = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        height = x.shape[-1]

        if height == 32:
            encoder_level = 1
            x = self.prelu(self.in1(x))
            x = self.prelu(self.out1(x))
            x = self.prelu(self.out2(x))
            x = self.prelu(self.out3(x))
            x = self.prelu(self.out4(x))
            x = self.prelu(self.essen(x))

        if height == 26:
            encoder_level = 2
            x = self.prelu(self.in2(x))
            x = self.prelu(self.out2(x))
            x = self.prelu(self.out3(x))
            x = self.prelu(self.out4(x))
            x = self.prelu(self.essen(x))

        if height == 20:
            encoder_level = 3
            x = self.prelu(self.in3(x))
            x = self.prelu(self.out3(x))
            x = self.prelu(self.out4(x))
            x = self.prelu(self.essen(x))

        if height == 16:
            encoder_level = 4
            x = self.prelu(self.in4(x))
            x = self.prelu(self.out4(x))
            x = self.prelu(self.essen(x))

        print(x.shape)
        x = self.pool(x)
        print(x.shape)
        x = self.flatten(x)
        encoded = self.linear(x)

        return encoded, encoder_level

# 입력 이미지 크기 정의
input_sizes = [(1, 3, 32, 32), (1, 3, 26, 26), (1, 3, 20, 20), (1, 3, 16, 16)]

# Encoder 모델 생성
latent_dim = 256  # 예시로 설정한 latent dimension
encoder = Encoder(latent_dim)

# 각 입력 이미지 크기에 대한 FLOPs 계산
for input_size in input_sizes:
    print(f"Input size: {input_size}")
    dummy_input = torch.randn(input_size)
    
    # thop을 사용하여 FLOPs과 파라미터 수 계산
    flops, params = profile(encoder, inputs=(dummy_input,))
    
    print(f"FLOPs: {flops/1000000}M")
    print(f"Params: {params}\n")
    print("="*80 + "\n")

 

import torch
import torch.nn as nn
from thop import profile

# 정의한 Encoder 클래스
class Encoder(nn.Module):
    def __init__(self, latent_dim):
        super(Encoder, self).__init__()
        self.latent_dim = latent_dim
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=5, stride=2, padding=2),  # Output: [batch, 16, 16, 16]
            nn.PReLU(),
            nn.Conv2d(16, 32, kernel_size=5, stride=2, padding=2),  # Output: [batch, 32, 8, 8]
            nn.PReLU(),
            nn.Conv2d(32, 32, kernel_size=5, stride=1, padding=2),  # Output: [batch, 32, 8, 8]
            nn.PReLU(),
            nn.Conv2d(32, 32, kernel_size=5, stride=1, padding=2),  # Output: [batch, 32, 8, 8]
            nn.PReLU(),
            nn.Flatten(),
            nn.Linear(2048, self.latent_dim),
        )

    def forward(self, x):
        encoded = self.encoder(x)
        #print(encoded.shape)
        return encoded

# Encoder 모델 생성
latent_dim =256  # 예시로 설정한 latent dimension
encoder = Encoder(latent_dim)

# 32x32x3 이미지에 대한 FLOPs 계산
input_size = (1, 3, 32, 32)  # 배치 크기 1, 채널 3, 이미지 크기 32x32
dummy_input = torch.randn(input_size)

# thop을 사용하여 FLOPs과 파라미터 수 계산
flops, params = profile(encoder, inputs=(dummy_input,))

print(f"FLOPs: {flops/1000000}M")
print(f"Params: {params}\n")

'DE > Code' 카테고리의 다른 글

Transmission code 20240911  (0) 2024.09.11
Level decision model's MSE training (x+x_f, x, x_f)  (0) 2024.08.27
Cifar10 Fourier  (0) 2024.08.27
DE : Selection (33%, 60%, 75%)  (0) 2024.08.15
Masked, Reshaped, index Gen  (0) 2024.08.10
Comments