UOMOP
Masking comparison (STL10) 본문
import numpy as np
import cv2
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
def patch_importance(image, patch_size=2, type='variance', how_many=2, noise_scale=0):
if isinstance(image, torch.Tensor):
image = image.numpy()
H, W = image.shape[-2:]
extended_patch_size = patch_size + 2 * how_many
value_map = np.zeros((H // patch_size, W // patch_size))
for i in range(0, H, patch_size):
for j in range(0, W, patch_size):
start_i = max(i - how_many, 0)
end_i = min(i + patch_size + how_many, H)
start_j = max(j - how_many, 0)
end_j = min(j + patch_size + how_many, W)
extended_patch = image[start_i:end_i, start_j:end_j]
if type == 'variance':
value = np.std(extended_patch)
elif type == 'mean_brightness':
value = np.mean(extended_patch)
elif type == 'contrast':
value = extended_patch.max() - extended_patch.min()
elif type == 'edge_density':
dy, dx = np.gradient(extended_patch)
value = np.sum(np.sqrt(dx ** 2 + dy ** 2))
elif type == 'color_diversity':
value = np.std(extended_patch)
noise = np.random.randn() * noise_scale
value_map[i // patch_size, j // patch_size] = value + noise
return value_map
def mask_based_on_importance(images, patch_size=2, mask_ratio=0.5, importance_type='variance', how_many=0, noise_scale=0):
B, C, H, W = images.shape
masked_images = images.clone()
unmasked_counts = []
mask_ratio = 1 - mask_ratio
target_unmasked_ratio = 1 - mask_ratio
num_patches = (H // patch_size) * (W // patch_size)
target_unmasked_patches = int(num_patches * target_unmasked_ratio)
for b in range(B):
unmasked_count = 0
patch_importance_map = patch_importance(images[b, 0], patch_size, importance_type, how_many, noise_scale)
patch_importance_flat = patch_importance_map.flatten()
sorted_indices = np.argsort(patch_importance_flat)
mask = np.zeros((H // patch_size, W // patch_size), dtype=bool)
for idx in sorted_indices:
if unmasked_count >= target_unmasked_patches:
break
mask[np.unravel_index(idx, mask.shape)] = True
unmasked_count += 1
for i in range(H // patch_size):
for j in range(W // patch_size):
if mask[i, j]:
masked_images[b, :, i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size] = 0
unmasked_counts.append(unmasked_count)
return masked_images, unmasked_counts
def chessboard_mask(images, patch_size=2, mask_ratio=0.5, importance_type='variance', how_many=0, noise_scale=0):
B, C, H, W = images.shape
masked_images = images.clone()
unmasked_counts = []
target_unmasked_ratio = 1 - mask_ratio
num_patches = (H // patch_size) * (W // patch_size)
target_unmasked_patches = int(num_patches * target_unmasked_ratio)
for b in range(B):
unmasked_count = 0
patch_importance_map = patch_importance(images[b, 0], patch_size, importance_type, how_many, noise_scale)
mask = np.zeros((H // patch_size, W // patch_size), dtype=bool)
for i in range(H // patch_size):
for j in range(W // patch_size):
if (i + j) % 2 == 0:
mask[i, j] = True
unmasked_count = np.sum(~mask)
if mask_ratio < 0.5:
masked_indices = np.argwhere(mask)
importances = patch_importance_map[mask]
sorted_indices = masked_indices[np.argsort(importances)[::-1]]
for idx in sorted_indices:
if unmasked_count >= target_unmasked_patches:
break
mask[tuple(idx)] = False
unmasked_count += 1
elif mask_ratio > 0.5:
unmasked_indices = np.argwhere(~mask)
importances = patch_importance_map[~mask]
sorted_indices = unmasked_indices[np.argsort(importances)]
for idx in sorted_indices:
if unmasked_count <= target_unmasked_patches:
break
mask[tuple(idx)] = True
unmasked_count -= 1
for i in range(H // patch_size):
for j in range(W // patch_size):
if mask[i, j]:
masked_images[b, :, i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size] = 0
unmasked_counts.append(unmasked_count)
return masked_images, unmasked_counts
def random_mask(images, patch_size=2, mask_ratio=0.5):
B, C, H, W = images.shape
masked_images = images.clone()
num_patches = (H // patch_size) * (W // patch_size)
num_masked_patches = int(num_patches * mask_ratio)
unmasked_counts = []
for b in range(B):
mask = np.zeros((H // patch_size, W // patch_size), dtype=bool)
mask_indices = np.random.choice(num_patches, num_masked_patches, replace=False)
mask_indices = np.unravel_index(mask_indices, mask.shape)
mask[mask_indices] = True
for i in range(H // patch_size):
for j in range(W // patch_size):
if mask[i, j]:
masked_images[b, :, i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size] = 0
unmasked_counts.append(num_patches - num_masked_patches)
return masked_images, unmasked_counts
def ppm(images, patch_size=2, mask_ratio=0.5):
B, C, H, W = images.shape
masked_images = images.clone()
num_patches = (H // patch_size) * (W // patch_size)
num_masked_patches = int(num_patches * mask_ratio)
unmasked_counts = []
center_x, center_y = H // 2, W // 2
sigma = max(H, W) / 8
for b in range(B):
mask = np.zeros((H // patch_size, W // patch_size), dtype=bool)
x = np.arange(H // patch_size)
y = np.arange(W // patch_size)
xv, yv = np.meshgrid(x, y, indexing='ij')
distances = np.sqrt((xv - center_x // patch_size) ** 2 + (yv - center_y // patch_size) ** 2)
probabilities = np.exp(-distances ** 2 / (2 * sigma ** 2))
probabilities /= probabilities.sum() # Normalize to sum to 1
probabilities_flat = probabilities.flatten()
mask_indices = np.random.choice(num_patches, num_masked_patches, replace=False, p=probabilities_flat)
mask_indices = np.unravel_index(mask_indices, mask.shape)
mask[mask_indices] = True
for i in range(H // patch_size):
for j in range(W // patch_size):
if mask[i, j]:
masked_images[b, :, i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size] = 0
unmasked_counts.append(num_patches - num_masked_patches)
return masked_images, unmasked_counts
def cpm(images, patch_size=2, mask_ratio=0.5):
B, C, H, W = images.shape
masked_images = images.clone()
num_patches = (H // patch_size) * (W // patch_size)
num_masked_patches = int(num_patches * mask_ratio)
unmasked_counts = []
center_x, center_y = H // 2, W // 2
sigma = max(H, W) / 0.0005
for b in range(B):
mask = np.zeros((H // patch_size, W // patch_size), dtype=bool)
x = np.arange(H // patch_size)
y = np.arange(W // patch_size)
xv, yv = np.meshgrid(x, y, indexing='ij')
distances = np.sqrt((xv - center_x // patch_size) ** 2 + (yv - center_y // patch_size) ** 2)
probabilities = 1 - np.exp(-distances ** 2 / (2 * sigma ** 2))
probabilities /= probabilities.sum()
probabilities_flat = probabilities.flatten()
mask_indices = np.random.choice(num_patches, num_masked_patches, replace=False, p=probabilities_flat)
mask_indices = np.unravel_index(mask_indices, mask.shape)
mask[mask_indices] = True
for i in range(H // patch_size):
for j in range(W // patch_size):
if mask[i, j]:
masked_images[b, :, i * patch_size:(i + 1) * patch_size, j * patch_size:(j + 1) * patch_size] = 0
unmasked_counts.append(num_patches - num_masked_patches)
return masked_images, unmasked_counts
transform = transforms.Compose([transforms.ToTensor()])
dataset = datasets.STL10(root='./data', download=True, transform=transform)
loader = DataLoader(dataset, batch_size=1, shuffle=True)
images, _ = next(iter(loader))
mask_ratios = [0.2343, 0.4375, 0.609375]
fig, axs = plt.subplots(len(mask_ratios), 6, figsize=(20, 10))
# 좌측 상단 이미지 제거
axs[0, 0].imshow(images[0].permute(1, 2, 0).numpy())
axs[0, 0].axis('off')
for ax in axs[0, 1:]:
ax.axis('off')
#column_titles = ['Original', 'Chessboard', 'Variance', 'Random', 'Periphery', 'Central']
#for ax, col in zip(axs[0], column_titles):
#ax.set_title(col)
#ax.axis('off')
row_labels = ['MR = 23.43%', 'MR = 43.75%', 'MR = 60%']
patch_size = 8
how_many = 4
for i, ratio in enumerate(mask_ratios):
masked_images_methods = [
images,
chessboard_mask(images, patch_size=patch_size, mask_ratio=ratio, importance_type='variance', how_many=how_many, noise_scale=0)[0],
mask_based_on_importance(images, patch_size=patch_size, mask_ratio=ratio, importance_type='variance', how_many=how_many, noise_scale=0)[0],
random_mask(images, patch_size=patch_size, mask_ratio=ratio)[0],
ppm(images, patch_size=patch_size, mask_ratio=ratio)[0],
cpm(images, patch_size=patch_size, mask_ratio=ratio)[0]
]
for j, masked_images in enumerate(masked_images_methods):
img = masked_images[0].permute(1, 2, 0).numpy()
axs[i, j].imshow(img)
axs[i, j].axis('off')
axs[i, 0].set_xticks([])
axs[i, 0].set_yticks([])
axs[i, 0].set_ylabel(row_labels[i], rotation=0, size='large', labelpad=60)
plt.subplots_adjust(wspace=0.0000001, hspace=0.0000001) # 이미지 간의 간격 조정
plt.tight_layout()
plt.savefig('result.jpg')
plt.show()
plt.savefig('result.jpg')
'DE > Code' 카테고리의 다른 글
Patch selection code (CBS) (0) | 2024.08.05 |
---|---|
Image (variance , entropy , edge) (0) | 2024.08.05 |
CheckerBoard Selection (0) | 2024.07.30 |
Random Selection (0) | 2024.07.30 |
Masking comparison (Cifar10) (0) | 2024.07.29 |
Comments