UOMOP
Cifar10 Rayleigh with SSIM 본문
import math
import torch
import random
import torchvision
import torch.nn as nn
from tqdm import tqdm
import torch.optim as optim
import torch.nn.functional as f
import matplotlib.pyplot as plt
import torchvision.transforms as tr
from torch.utils.data import DataLoader
import numpy as np
import torchvision.transforms as transforms
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
args = {
'BATCH_SIZE' : 50,
'LEARNING_RATE' : 0.001,
'NUM_EPOCH' : 20,
'SNR_dB' : [1, 10, 20],
'latent_dim' : 500,
'input_dim' : 32 * 32
}
transf = tr.Compose([tr.ToTensor(), tr.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 원래 pytorch cifar10은 0~1사이의 값을 가진다.
# -1~1로 정규화를 시켜준다.
trainset = torchvision.datasets.CIFAR10(root = './data', train = True, download = True, transform = transf)
testset = torchvision.datasets.CIFAR10(root = './data', train = False, download = True, transform = transf)
trainloader = DataLoader(trainset, batch_size = args['BATCH_SIZE'], shuffle = True)
testloader = DataLoader(testset, batch_size = args['BATCH_SIZE'], shuffle = True)
def SSIM(x, y):
# assumption : x and y are grayscale images with the same dimension
import numpy as np
def mean(img):
return np.mean(img)
def sigma(img):
return np.std(img)
def cov(img1, img2):
img1_ = np.array(img1[:,:], dtype=np.float64)
img2_ = np.array(img2[:,:], dtype=np.float64)
return np.mean(img1_ * img2_) - mean(img1) * mean(img2)
K1 = 0.01
K2 = 0.03
L = 2 # when each pixel spans 0 to 255
C1 = K1 * K1 * L * L
C2 = K2 * K2 * L * L
C3 = C2 / 2
l = (2 * mean(x) * mean(y) + C1) / (mean(x)**2 + mean(y)**2 + C1)
c = (2 * sigma(x) * sigma(y) + C2) / (sigma(x)**2 + sigma(y)**2 + C2)
s = (cov(x, y) + C3) / (sigma(x) * sigma(y) + C3)
return l * c * s
def transmit_img_AE(model_name, SNRdB, testloader) :
model = Autoencoder()
model.load_state_dict(torch.load(model_name))
fig = plt.figure()
batch_size = args['BATCH_SIZE']
for data in testloader :
inputs = data[0]
outputs = model(inputs, SNRdB = SNRdB)
break
rand_num = random.randrange(batch_size)
plt.subplot(1, 2, 1)
plt.imshow( inputs[rand_num].permute(1, 2, 0).detach().numpy())
plt.title('Original img')
plt.subplot(1, 2, 2)
plt.imshow(outputs[rand_num].permute(1, 2, 0).detach().numpy())
plt.title('Decoded img')
def PSNR_test(model_name, testloader) :
if model_name[-6] == '=' :
SNRdB = int(model_name[-5])
else :
SNRdB = int(model_name[-6] + model_name[-5])
model_1 = Autoencoder().to(device)
model_1.load_state_dict(torch.load(model_name))
PSNR_list = []
for data in testloader :
inputs = data[0].to(device)
outputs = model_1( inputs, SNRdB = SNRdB)
for j in range(len(inputs)) :
PSNR = 0
for k in range(3) :
MSE = torch.sum(torch.pow(inputs[j][k] - outputs[j][k], 2)) / args['input_dim']
PSNR += 10 * math.log10(1 / MSE)
PSNR_list.append(PSNR / 3)
print("PSNR : {}".format(round(sum(PSNR_list) / len(PSNR_list), 2)))
return round(sum(PSNR_list) / len(PSNR_list), 2)
def compare_PSNR(SNRdB_list, model_name_without_SNRdB, testloader) :
PSNR_list = []
for i in range(len(SNRdB_list)) :
SNRdB = SNRdB_list[i]
model_name = model_name_without_SNRdB + "_SNR=" + str(SNRdB) + ".pth"
PSNR = PSNR_test(model_name, testloader)
PSNR_list.append(PSNR)
plt.plot(args['SNR_dB'], PSNR_list, linestyle = 'dashed', color = 'blue', label = "Rayleigh")
plt.grid(True)
plt.legend()
plt.show()
def model_train(SNRdB_list, learning_rate, epoch_num, trainloader) :
for i in range( len(args['SNR_dB']) ):
model = Autoencoder().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr = learning_rate)
print("+++++ SNR = {} Training Start! +++++\t".format(args['SNR_dB'][i]))
for epoch in range(epoch_num) :
running_loss = 0.0
running_ssim = 0.0
for data in trainloader :
inputs = data[0].to(device)
gray_inputs = transforms.Grayscale()(inputs)
optimizer.zero_grad()
outputs = model( inputs, SNRdB = args['SNR_dB'][i])
gray_outputs = transforms.Grayscale()(outputs)
loss = criterion(inputs, outputs)
loss.backward()
optimizer.step()
running_loss += loss.item()
for k in range(len(gray_inputs)) :
running_ssim += SSIM(gray_inputs[k].detach().cpu().numpy().squeeze(), gray_outputs[k].detach().cpu().numpy().squeeze())
train_loss = running_loss/len(trainloader)
train_ssim = running_ssim/(len(gray_inputs)*len(trainloader))
running_loss = 0.0
for data in testloader :
inputs = data[0].to(device)
outputs = model( inputs, SNRdB = args['SNR_dB'][i])
loss = criterion(inputs, outputs)
running_loss += loss.item()
test_loss = running_loss/len(testloader)
print("[{} Epoch] test_PSNR : {}\tval_PSNR : {}\tSSIM : {}".format(epoch + 1, round(10 * math.log10(4 / train_loss), 3), round(10 * math.log10(4 / test_loss), 3), round(train_ssim, 3)))
print()
PATH = "./"
torch.save(model.state_dict(), PATH + "model_AWGN(color)" + "_SNR=" + str(args['SNR_dB'][i]) +".pth")
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
c_hid = 32
self.encoder = nn.Sequential(
nn.Conv2d(3, c_hid, kernel_size=3, padding=1, stride=2), # 32x32 => 16x16
nn.ReLU(),
nn.Conv2d(c_hid, c_hid, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(c_hid, 2 * c_hid, kernel_size=3, padding=1, stride=2), # 16x16 => 8x8
nn.ReLU(),
nn.Conv2d(2 * c_hid, 2 * c_hid, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(2 * c_hid, 2 * c_hid, kernel_size=3, padding=1, stride=2), # 8x8 => 4x4
nn.ReLU(),
nn.Flatten(), # Image grid to single feature vector
nn.Linear(2 * 16 * c_hid, args['latent_dim'])
)
def forward(self, x):
return self.encoder(x)
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
c_hid = 32
self.linear = nn.Sequential(
nn.Linear(args['latent_dim'], 2 * 16 * c_hid),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(2 * c_hid, 2 * c_hid, kernel_size=3, output_padding=1, padding=1, stride=2), # 4x4 => 8x8
nn.ReLU(),
nn.Conv2d(2 * c_hid, 2 * c_hid, kernel_size=3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(2 * c_hid, c_hid, kernel_size=3, output_padding=1, padding=1, stride=2), # 8x8 => 16x16
nn.ReLU(),
nn.Conv2d(c_hid, c_hid, kernel_size=3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(c_hid, 3, kernel_size=3, output_padding=1, padding=1, stride=2), # 16x16 => 32x32
)
def forward(self, x):
x = self.linear(x)
x = x.reshape(x.shape[0], -1, 4, 4)
decoded = self.decoder(x)
return decoded
class Autoencoder(nn.Module):
def __init__(
self,
encoder_class: object = Encoder,
decoder_class: object = Decoder
):
super(Autoencoder, self).__init__()
self.encoder = encoder_class()
self.decoder = decoder_class()
def Rayleigh(self, input, SNRdB):
normalized_tensor = f.normalize(input, dim=1)
SNR = 10.0 ** (SNRdB / 10.0)
K = args['latent_dim']
std = 1 / math.sqrt(K * SNR)
h = (np.sqrt(torch.normal(0, 1, size=normalized_tensor.size())**2 + torch.normal(0, 1, size=normalized_tensor.size())**2) / np.sqrt(2)).to(device)
n = torch.normal(0, std, size=normalized_tensor.size()).to(device)
return normalized_tensor + n/h
def forward(self, x, SNRdB):
encoded = self.encoder(x)
#print("encoded : {}".format(encoded[0]))
#print("encoded size : {}".format(encoded.size()))
encoded_AWGN = self.Rayleigh(encoded, SNRdB)
#print("encoded_AWGN size : {}".format(encoded_AWGN.size()))
decoded = self.decoder(encoded_AWGN)
#print("decoded : {}".format(decoded[0]))
#print("decoded size : {}".format(decoded.size()))
return decoded
SNRdB_list = args['SNR_dB']
learning_rate = args['LEARNING_RATE']
epoch_num = args['NUM_EPOCH']
trainloader = trainloader
model_name_without_SNRdB = 'model_AWGN(color)'
model_train(SNRdB_list, learning_rate, epoch_num, trainloader)
'Wireless Comm. > CISL' 카테고리의 다른 글
Cifar10 AWGN [1dB, 10dB, 20dB] (0) | 2023.07.18 |
---|---|
Cifar10 Rayleigh [1dB 10dB 20dB] (0) | 2023.07.11 |
Low Pass Filtering using cv2 (0) | 2023.07.11 |
Cifar10 Autoencoder 20230710 Rayleigh (0) | 2023.07.10 |
Basic AutoEncoder using Cifar10 (0) | 2023.06.10 |
Comments