UOMOP
Librosa - tempo contorl 본문
Tempo 확인하기
음원의 템포를 확인하기 위해서 librosa에서 제공하는 beat_track, tempo함수를 사용하였지만, 이상적인 결과를 확인하지 못하였다. flatness를 구해서 Spectral_Centroid의 Mean값으로 tempo를 확인하는 것이 더 이상적이다.
# ========================= 각종 함수 정의 =========================
def Devider(A, B, sr, period, mode) :
# A : 표절 논란곡 1
# B : 표절 논란곡 2
# sr : A, B의 Sampling Rate
# period : 몇 초씩 쪼갤 것인가
# mode = 1 : 전체 길이 데이터를 사용
# = 2 : 전체 길의의 1/2만을 사용
# ===== 두 곡의 길이를 동일하게 설정 =====
length = int( ( min(len(A.tolist()), len(B.tolist())) ) / mode )
A = (A[0 : length])
B = (B[0 : length])
# ===== 2곡의 Data를 몇 개로 dividing 할 것인지 확인 =====
num_of_window = math.floor(length / (period * sr))
final_index_A = 0
final_index_B = 0
# ===== 각 곡의 dividing된 Data가 Mat_A, Mat_B에 2D-array로 save =====
Mat_A = [[0 for col in range(period * sr)] for row in range(num_of_window)]
Mat_B = [[0 for col in range(period * sr)] for row in range(num_of_window)]
# ===== 각 곡의 dividing된 Data가 Mat_A, Mat_B에 2D-array로 save =====
for i in range(0, num_of_window) :
for j in range(0, period * sr) :
Mat_A[i][j] = A[final_index_A + j]
Mat_B[i][j] = B[final_index_B + j]
final_index_A = (period * sr) * (i+1)
final_index_B = (period * sr) * (i+1)
return Mat_A, Mat_B
def extractor(A, area, sr) :
# area = 01:31.05 ~ 02:18.32
area = str(area)
start = int(area[0]) * 600 + int(area[1]) * 60 + int(area[3]) * 10 + int(area[4]) * 1 + int(area[6]) /100
end = int(area[10]) * 600 + int(area[11]) * 60 + int(area[13]) * 10 + int(area[14]) * 1 + int(area[16]) /10
A_cut = A[int(start * sr) : int(end * sr)]
return A_cut
def get_features(y, sr) : # Categorizing label data
chroma_shift = librosa.feature.chroma_stft(y, n_fft=2048, hop_length=512) # 음악의 크로마 특징
rmse = librosa.feature.rms(y, frame_length=512, hop_length=512) # RMS값
spectral_centroids = librosa.feature.spectral_centroid(y, sr=sr) # 스펙트럼 무게 중심
spec_bw = librosa.feature.spectral_bandwidth(y, sr=sr) # 스펙트럼 대역폭
spectral_rolloff = librosa.feature.spectral_rolloff(y, sr=sr)[0] # rolloff
zcr = librosa.feature.zero_crossing_rate(y, hop_length=512) # zero to crossing
y_harm, y_perc = librosa.effects.hpss(y) # 하모닉, 충격파
tempo, _ = librosa.beat.beat_track(y, sr=sr) # 템포
mfcc = librosa.feature.mfcc(y, sr=sr,n_mfcc=20) # mfcc 20까지 추출
features_extracted = np.hstack([
np.mean(chroma_shift),
np.var(chroma_shift),
np.mean(rmse),
np.var(rmse),
np.mean(spectral_centroids),
np.var(spectral_centroids),
np.mean(spec_bw),
np.var(spec_bw),
np.mean(spectral_rolloff),
np.var(spectral_rolloff),
np.mean(zcr),
np.var(zcr),
np.mean(y_harm),
np.var(y_harm),
np.mean(y_perc),
np.var(y_perc),
tempo,
np.mean(mfcc.T, axis=0),
np.var(mfcc.T, axis=0)
])
features = features_extracted.reshape(1, 57)
col_name = ['chroma_stft_mean', 'chroma_stft_var', 'rms_mean', 'rms_var', 'spectral_centroid_mean', 'spectral_centroid_var', 'spectral_bandwidth_mean', 'spectral_bandwidth_var', 'rolloff_mean', 'rolloff_var', 'zero_crossing_rate_mean', 'zero_crossing_rate_var', 'harmony_mean', 'harmony_var', 'perceptr_mean', 'perceptr_var', 'tempo', 'mfcc1_mean', 'mfcc1_var', 'mfcc2_mean', 'mfcc2_var', 'mfcc3_mean', 'mfcc3_var', 'mfcc4_mean', 'mfcc4_var', 'mfcc5_mean', 'mfcc5_var', 'mfcc6_mean', 'mfcc6_var', 'mfcc7_mean', 'mfcc7_var', 'mfcc8_mean', 'mfcc8_var', 'mfcc9_mean', 'mfcc9_var', 'mfcc10_mean', 'mfcc10_var', 'mfcc11_mean', 'mfcc11_var', 'mfcc12_mean', 'mfcc12_var', 'mfcc13_mean', 'mfcc13_var', 'mfcc14_mean', 'mfcc14_var', 'mfcc15_mean', 'mfcc15_var', 'mfcc16_mean', 'mfcc16_var', 'mfcc17_mean', 'mfcc17_var', 'mfcc18_mean', 'mfcc18_var', 'mfcc19_mean', 'mfcc19_var', 'mfcc20_mean', 'mfcc20_var']
df = pd.DataFrame(features, columns = col_name)
array = (np.array(features)).tolist()
return df, array
def get_tempo(y, sr) :
tempo, _ = librosa.beat.beat_track(y, sr=sr)
return tempo
def get_flatness(y, sr) :
flatness = librosa.feature.spectral_flatness(y = y)
sr = 22050
A, sr = librosa.load('3-1.wav', sr = sr)
A_plag_area = "00:39.5 ~ 00:45.5"
A_extracted = extractor(A, A_plag_area, sr)
A_flatness = librosa.feature.spectral_flatness(y = A_extracted)
#x_A = range(0, len(A_flatness[0]))
plt.plot((A_flatness[0]))
#plt.ylim([0, 0.15])
plt.show
'Project > Music Plagiarism Project' 카테고리의 다른 글
Music Genre Classification using XGBoost (0) | 2022.10.26 |
---|---|
Pearson Coefficient, DTW(Dynamic Time Wrapping) (0) | 2022.10.25 |
Cutting Period에 따른 Pearson Coef. (0) | 2022.07.19 |
"Similarity Detection" using Pearson Correlation Coefficient (0) | 2022.07.19 |
Colab 다중 선택, 수정 (0) | 2022.07.09 |
Comments